Octahedralizing 3-Colorable 3-Polytopes

نویسندگان

چکیده

We investigate the question of whether any d-colorable simplicial d-polytope can be octahedralized, i.e., subdivided to a d-dimensional geometric cross-polytopal complex. give positive answer in dimension 3, with additional property that octahedralization introduces no new vertices on boundary polytope.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coloring 3-Colorable Graphs

Graph coloring in general is an extremely easy-to-understand yet powerful tool. It has wide-ranging applications from register allocation to image segmentation. For such a simple problem, however, the question is surprisingly intractable. In this section I will introduce the problem formally, as well as present some general background on graph coloring. There are several ways to color a graph, ...

متن کامل

Bicircular matroids are 3-colorable

Hugo Hadwiger proved that a graph that is not 3-colorable must have a K4minor and conjectured that a graph that is not k-colorable must have a Kk+1minor. By using the Hochstättler-Nešetřil definition for the chromatic number of an oriented matroid, we formulate a generalized version of Hadwiger’s conjecture that might hold for the class of oriented matroids. In particular, it is possible that e...

متن کامل

Acyclically 3-Colorable Planar Graphs

In this paper we study the planar graphs that admit an acyclic 3-coloring. We show that testing acyclic 3-colorability is NP-hard, even for planar graphs of maximum degree 4, and we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Further, we show that every planar graph has a subdivision with one vertex per edge that admits an acyclic 3-colori...

متن کامل

On uniquely 3-colorable planar graphs

A k-chromatic graph G is called uniquely k-colorable if every k-coloring of the vertex set V of G induces the same partition of V into k color classes. There is an innnite class C of uniquely 4-colorable planar graphs obtained from the K 4 by repeatedly inserting new vertices of degree 3 in triangular faces. In this paper we are concerned with the well-known conjecture (see 6]) that every uniqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Computational Geometry

سال: 2021

ISSN: ['1432-0444', '0179-5376']

DOI: https://doi.org/10.1007/s00454-020-00262-4